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revealed as a track by an appropriate chemical etching

procedurs Y .For this reason,

tons, o particles, or oxygen ions, do not directly pro-

duce tracks in mica crystals. However, when these

ions interact with heavier nuclei, the reaction products

thus produced may be heavy enough Tto produce short inter-
4

o 2 he 1 (2-39 ?)
action tracks ? .

“

In the present work we have studied the geometrical

characteristics and the thermal stabi

D

action tracks produced by protons and o particlies ia mica
and also in minerals which are found in meteorites or

-
H

which are likely to be found in Tunar materials. The en-

ergy and the Tluxes of the ion were chosen to simulate ex-

s a3 L C e . .
posures of >107 years in the Tignt component of the sol

33

s3]

flare cosmic rays. This study is the first part of

5

general survey which should help to predict the character-

istics of the track disi

ribution that can be expected from
an exposure of meteoritic or Tunar materials to solar cosmi

rays.
EXPERIMENTAL TECHNIQUE AND RESULTS

Single crystals of each of ti




neated In & Turnace during 8 hours at different tempera-
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tures (6307C Tor the muscovite samples, 800°C for the
hypevrsthene, enstatite, diopszde)hornbiende crystals, 1000°C
for the albite crystals), in order to anneal any fossil
tracks present in T ample Several freshly cleaved or
CraCKs ‘Ll'\..)CﬁL. HE ] Lﬁe SL‘H':}EL_S eve d [ fzx‘j Limavey ¥
fractured surfaces of each mineral were then heavily etched
Wwith the solution used Tater to reveal the interaction irack
& background density of large etch pits, ranging from 10~

- ""6 ,_”,2 o o “ RS N =

to 107 /cm™ were found on all the surfaces.

Those surfaces containing the lowest background pit
) T 4 2 il " . 3 3 ") FLt
densities (<107/cm®) were then selected and covered with
thin-slabs of converter materials (lexan, muscovite, AT,
Zn, Au) and irradiated with protons of 11 MeV or with o

o an . . ' c an1b 2 :
particles of 30 MeV, with maximum doses of 10 “p/cm” and
’EOES ',2 " - R R . e : g «'»-‘« 3 [
L. a/cm”. In some irradiations, the energies of the ions
were changed by covering the converters with muscovite
Toils of different thicknesses. The reduced energies
were calculated from the range energy tables of Henke and
: . 5
BEHEOH< >.

After the irradiation, some of the crystals were
etched directly; others were first annealed for two hours
oo & 1 o ~ - - < O."\ ,,Df\ bl .
at different temperatures varying from 300°C to 900°C. The
sampies wevre all etched at room temperature as follows:

1. muscovite and hypersthene | hour in HF (48%):; 2. horn-
biende: 10 minutes in a mixture made of 2 parts HF (48%),
l part SO&HZ (80%) and 4 parts of water; 3. ‘enstatite:

[£2)



same sotutiony 5. labradorite: 30 seconds in Tthe same so

tion; 6. diopside and augite: 30 minutes in

that had been in contact with the converter foils during the

irradiation were covered with small pits whose numbers ¢great

~
i

L e

1y exceeded those of the background pits. A
E.

tracks”, were observed

with both an optical microscope and a stereo-scan electror

-3

microscope (figures 1 and 2), the following principal ob~

., L

servations were made with the optical microscope:

density of interaction tracks. = The rate of productio;

was highest in albite and Towest in augite (see

e}

The other minerals did not show a measurable increas

atter irradiation.

£

2. The protons produced no measurablie density of

new pits except in the muscovite plus muscovite con-

verter where the density of proton induced pits was
lower than that produced by a flux of a particles

1000 times Tower. Therefore, in t

will speak only of o interaction tracks.
3. For the same energy of the incident o« particles
in the mica, the intevraction track rate production,
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4

alphas decreases However, a measurable track
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used here.

Tar cosmic rays may thus

s. However

show these tracks.
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bv particles such as iron that are capable of register:

- i )

RN g RN 47 PONTAS. £ ~ i~ my ok = . oo E A e S
Lracks divectily anda (v a component that arises Trom tne

Tower abundance, the directly registered particies ally
produce many more tracks than do the interaction events.
However, because heavy particles are absorbed more rapidly

oy

than Tight particles, the proportion of tracks that are

o

(G ]

produced by interaction events increases with increasin
depth in the grain.

From calculations that will be described in more de-

tail elsewhere, we estimate that the interaction tracks would
become easily measurable at a depth of 100 from an irradiated

that measured here for hornblende and mica. In these ca.cu-

Tations we took the integral energy s
14)

/1
rays as N(E) = CE™® with o = 3%'7° . The abundance of el
was assumed to be identical to the photospheric abundances
measured in the sun.

Probably the most striking and most diagnostic effect pro-
duced by solar cosmic rays is the very rapid attenuation with
depth of rather large tracks (~10u) produced by the directly
registered particles such as Fe. The Importance o7 tnis effect
has already been pointed out by Pellas gt &l and by Lal et

o
'\—i(o) R IERN -~ o c o & gm e PR S Loam mlse o T
at . However, the study of the interaction tradlxs may ais<
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